- Accuracy, Precision, Recall, & F1
- Active Learning
- AI vs. ML vs. DL
- Apache Spark
- Arbiter
- Artificial Intelligence (AI)
- Attention Mechanism Memory Networks
- Automated Machine Learning & AI
- Autonomous Vehicle
- Backpropagation
- Bag of Words & TF-IDF
- Comparison of Frameworks
- Convolutional Neural Network (CNN)
- Data for Deep Learning
- Datasets and Machine Learning
- DataVec
- Decision Tree
- Deep Autoencoders
- Deep-Belief Networks
- Deep Reinforcement Learning
- Deep Learning Resources
- Deeplearning4j
- Denoising Autoencoders
- Machine Learning DevOps
- Differentiable Programming
- Eigenvectors, Eigenvalues, PCA, Covariance and Entropy
- Evolutionary & Genetic Algorithms
- Fraud and Anomaly Detection
- Generative Adversarial Network (GAN)
- Glossary
- Gluon
- Graph Analytics
- Hopfield Networks
- Hyperparameter
- Wiki Home
- Java AI
- Jumpy
- Logistic Regression
- LSTM
- Machine Learning Algorithms
- Machine Learning Demos
- Machine Learning Software
- Machine Learning Operations (MLOps)
- Machine Learning Research Groups & Labs
- Machine Learning Workflows
- Machine Learning
- Markov Chain Monte Carlo
- Multilayer Perceptron
- ND4J
- Neural Network Tuning
- Neural Network
- Open Datasets
- Radial Basis Function Networks
- Random Forest
- Recurrent Network (RNN)
- Recursive Neural Tensor Network
- Restricted Boltzmann Machine (RBM)
- Robotic Process Automation (RPA)
- Scala AI
- Single-layer Network
- Skynet
- Spiking Neural Networks
- Stacked Denoising Autoencoder (SDA)
- Strong AI & General AI
- Supervised Learning
- Symbolic Reasoning
- Text Analysis
- Thought Vectors
- Unsupervised Learning
- Deep Learning Use Cases
- Variational Autoencoder (VAE)
- A Beginner's Quide to Word2Vec and Neural Word Embeddings

An autoencoder is a neural network used for dimensionality reduction; that is, for feature selection and extraction. Autoencoders with more hidden layers than inputs run the risk of learning the identity function – where the output simply equals the input – thereby becoming useless.

Denoising autoencoders are an extension of the basic autoencoder, and represent a stochastic version of it. Denoising autoencoders attempt to address identity-function risk by randomly corrupting input (i.e. introducing noise) that the autoencoder must then reconstruct, or denoise.

The amount of noise to apply to the input takes the form of a percentage. Typically, 30 percent, or 0.3, is fine, but if you have very little data, you may want to consider adding more.

Setting up a single-thread denoising autoencoder is easy.

To create the machine, you simply instantiate an AutoEncoder and set the corruptionLevel, or noise, as you can see in the example below.

That’s how you set up a denoising autoencoder with one visible layer and one hidden layer using MNIST data. This net has a learning rate of 0.1, momentum of of 0.9, and utilizes reconstruction cross entropy as its loss function.

Next, we’ll show you a stacked denoising autoencoder, which is simply many denoising autoencoders strung together.

Our AI experts will chat with you and your solutions architect for a 30 min Q&A.

TALK TO A SKYMIND EXPERT